AP CALCULUS AB	Homework 0212 Solutions
Dr. Paul L. Bailey	Wednesday, February 12, 2025

Problem 1 (Thomas §4.2 # 4). Let $f(x) = \sqrt{x-1}$. Let a = 1 and b = 3. Find $c \in [a, b]$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Solution. First compute $f'(x) = \frac{1}{2\sqrt{x-1}}$. Then compute $\frac{f(b) - f(a)}{b-a} = \frac{f(3) - f(1)}{3-1} = \frac{\sqrt{2}}{2}$. Set $\frac{1}{2\sqrt{x-1}} = \frac{\sqrt{2}}{2}$ and solve for x. Thus $c = \frac{3}{2}$.

Problem 2 (Thomas $\S4.2 \# 10$). Let

$$f(x) = \begin{cases} 3 & \text{for } x = 0\\ -x^2 + 3x + a & \text{for } x \in (0, 1)\\ mx + b & \text{for } x \in [1, 2] \end{cases}$$

For what values of a, m, and b does f satisfy the hypothesis of the Mean Value Theorem on the interval [0, 2]?

Solution. The function must be differentiable at x = 1, so -2x + 3 = m at x = 1, so m = -2 + 3 = 1. The function must be continuous at x = 0, so 3 = a. The function must be continuous at x = 1, so $-x^2 + 3x + 3 = x + b$ when x = 1, so 5 = 1 + b, so b = 4.

Problem 3 (Thomas §4.2 # 15). Show that the function

$$f(x) = x^4 + 3x + 1$$

has exactly one zero on [-2, -1].

Solution. Note that $f'(x) = 4x^3 + 3$. A sign chart for f' tells us that f is decreasing for $x < -\sqrt[3]{\frac{3}{4}}$; thus f is injective on [-2, -1]. Now f(-2) = 11 and f(-1) = -1, so there exists $c \in (-2, -1)$ such that f(c) = 0 by the Intermediate Value Theorem, and it is unique by injectivity.

Problem 4 (Thomas §4.2 # 19). Show that the function

$$r(\theta) = \theta + \sin^2(\theta/3) - 8$$

has exactly one zero on \mathbb{R} .

Solution. Note that $\frac{dr}{d\theta} = 1 + \frac{2}{3}\sin(\theta/3)\cos(\theta/3)$. Since $|\sin(\theta/3)\cos(\theta/3)| \le 1$, this is always positive, so r is increasing, and thus injective. Moreover, r(0) < 0 and r(8) > 0, so r has a zero by IVT.

Problem 5 (Thomas §3.7 # 27). A particle moves along the parabola $y = x^2$ in the first quadrant in such a way that its x-coordinate (measured in meters) increases at a steady 10 m/sec. How fast is the angle of inclination θ of the line joining the particle to the origin changing when x = 3 m?

Solution. This is a related rates problem. Follow these steps.

- Draw it.
- Label variables and write down relations (equations).
- Identify the cheese. This is typically of the form $\frac{dz}{dt}$, where z is one of your variables.
- Take $\frac{d}{dt}$ of both sides of the main equation that has z in it. Solve for $\frac{dz}{dt}$.

Our main relations and cheese are:

• $y = x^2$ • $\frac{dx}{dt} = 10$

•
$$\tan \theta = \frac{y}{x}$$
 and $\sec \theta = \frac{\sqrt{x^2 + y^2}}{x}$

• Cheese: $\frac{d\theta}{dt}$ when x = 3

Take $\frac{d}{dt}$ of both sides of $\tan \theta = \frac{y}{x}$ to get

$$\sec^2(\theta)\frac{d\theta}{dt} = \frac{\frac{dy}{dt}x - y\frac{dx}{dt}}{x^2},$$

 \mathbf{SO}

$$\frac{d\theta}{dt} = \frac{\frac{dy}{dt}x - y\frac{dx}{dt}}{x^2 \sec^2(\theta)} = \frac{\frac{dy}{dt}x - y\frac{dx}{dt}}{x^2 + y^2}.$$

Note that when x = 3, we have $\frac{dy}{dt} = 2x\frac{dx}{dt} = 60$. Set x = 3 so y = 9 and plug in to get

$$\frac{d\theta}{dt} = \frac{(60)(3) - (9)(10)}{9 + 81} = 1.$$

Problem 6 (Thomas §3.6 # 46). Consider the equation

$$(x^{2} + y^{2})^{2} = (x - y)^{2}.$$

Find the slope of the curve at (1,0) and (1,-1).

Solution. Implicitly differentiate the equation to get

$$2(x^{2} + y^{2})(2x + 2yy') = 2(x - y)(1 - y').$$

Problem 7 (Thomas $\S4.1 \#4$). Let

$$f(x) = \frac{x+1}{x^2 + 2x + 2}.$$

Find all local extreme values of the function f, and where they occur.

Solution. Let $g(x) = \frac{x}{x^2 + 1}$. We previously found that g(x) has a local max at (1, 1/2) and a local min at (-1, -1/2). Now f(x) = g(x + 1), so its graph is the graph of g shifted left by 1. Thus its local min is (0, 1/2) and (-2, -1/2).

Problem 8. Let

$$f(x) = x^3 - 7x + 6.$$

Let $a, b, c \in \mathbb{R}$ with a < b < c and f(a) = f(b) = f(c). Let A = [a, c] and B = f(A). Write B in interval notation.

Solution. Factor f(x) = (x+3)(x-1)(x-2). So a = -3, b = 1, c = 2. Compute $f'(x) = 3x^2 - 7$, so f'(x) = 0 implies that $x = \pm \sqrt{\frac{7}{3}}$. Let $a = \sqrt{\frac{7}{3}}$. The range is $[f(-a), f(a)] = [6 - \sqrt{\frac{7}{3}}, 6 + \sqrt{\frac{7}{3}}]$.

Problem 9. Consider the polynomial

$$f(x) = x^4 - 2x^2 - 15.$$

Find all real zeros of the f. (Hint: Factor by Substitution $u = x^2$)

Solution. We have

$$f(x) = x^4 - 2^2 - 15 = (x^2 + 3)(x^2 - 5) = (x - \sqrt{3}i)(x + \sqrt{3}i)(x - \sqrt{5})(x + \sqrt{5}).$$

The *real* zeros are $\pm\sqrt{5}$.

Problem 10. Consider the polynomial

$$f(x) = 3x^3 + 11x^2 - 19x + 5$$

Find all real zeros of the f. (Hint: Rational Zeros Theorem)

Solution. By the Rational Zeroes Theorem, the only possible rational zeros are

$$\pm 1, \pm 5, \pm \frac{1}{3}, \pm \frac{5}{3}.$$

We try these one are a time starting at the easiest. Now f(1) = 3 + 11 - 19 + 5 = 0. By the Factor Theorem, f(x) is divisible by x - 1. Synthetic division gives

$$f(x) = (x-1)(3x^2 + 14x - 5) = (x-1)(3x-1)(x+5).$$

So the real zeros are 1, $\frac{1}{3}$, and -5.